- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dhital, Saroj (2)
-
Barnard, Holly R. (1)
-
Billings, Sharon A. (1)
-
Cai, Jiaxuan (1)
-
Chaney, Nathaniel W (1)
-
Chappell, Adrian (1)
-
Duniway, Michael C (1)
-
Edwards, Brandon (1)
-
Gasparini, Nicole M. (1)
-
Jarecke, Karla M. (1)
-
Jones, Candace (1)
-
Kaplan, Michael L (1)
-
Kastelic, Eric C. (1)
-
LeGrand, Sandra L (1)
-
Letcher, Theodore W (1)
-
Li, Li (1)
-
Ma, Lin (1)
-
Madoff, Risa D. (1)
-
McKenzie_Skiles, S (1)
-
Naple, Patrick (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Dust transported from rangelands of the Southwestern United States (US) to mountain snowpack in the Upper Colorado River Basin during spring (March‐May) forces earlier and faster snowmelt, which creates problems for water resources and agriculture. To better understand the drivers of dust events, we investigated large‐scale meteorology responsible for organizing two Southwest US dust events from two different dominant geographic locations: (a) the Colorado Plateau and (b) the northern Chihuahuan Desert. High‐resolution Weather Research and Forecasting coupled with Chemistry model (WRF‐Chem) simulations with the Air Force Weather Agency dust emission scheme incorporating a MODIS albedo‐based drag‐partition was used to explore land surface‐atmosphere interactions driving two dust events. We identified commonalities in their meteorological setups. The meteorological analyses revealed that Polar and Sub‐tropical jet stream interaction was a common upper‐level meteorological feature before each of the two dust events. When the two jet streams merged, a strong northeast‐directed pressure gradient upstream and over the source areas resulted in strong near‐surface winds, which lifted available dust into the atmosphere. Concurrently, a strong mid‐tropospheric flow developed over the dust source areas, which transported dust to the San Juan Mountains and southern Colorado snowpack. The WRF‐Chem simulations reproduced both dust events, indicating that the simulations represented the dust sources that contributed to dust‐on‐snow events reasonably well. The representativeness of the simulated dust emission and transport in different geographic and meteorological conditions with our use of albedo‐based drag partition provides a basis for additional dust‐on‐snow simulations to assess the hydrologic impact in the Southwest US.more » « less
-
Singha, Kamini; Sullivan, Pamela L.; Billings, Sharon A.; Walls, Leon; Li, Li; Jarecke, Karla M.; Barnard, Holly R.; Gasparini, Nicole M.; Madoff, Risa D.; Dhital, Saroj; et al (, Earth's Future)Two major barriers hinder the holistic understanding of subsurface critical zone (CZ) evolution and its impacts: (a) an inability to measure, define, and share information and (b) a societal structure that inhibits inclusivity and creativity. In contrast to the aboveground portion of the CZ, which is visible and measurable, the bottom boundary is difficult to access and quantify. In the context of these barriers, we aim to expand the spatial reach of the CZ by highlighting existing and effective tools for research as well as the “human reach” of CZ science by expanding who performs such science and who it benefits. We do so by exploring the diversity of vocabularies and techniques used in relevant disciplines, defining terminology, and prioritizing research questions that can be addressed. Specifically, we explore geochemical, geomorphological, geophysical, and ecological measurements and modeling tools to estimate CZ base and thickness. We also outline the importance of and approaches to developing a diverse CZ workforce that looks like and harnesses the creativity of the society it serves, addressing historical legacies of exclusion. Looking forward, we suggest that to grow CZ science, we must broaden the physical spaces studied and their relationships with inhabitants, measure the “deep” CZ and make data accessible, and address the bottlenecks of scaling and data‐model integration. What is needed—and what we have tried to outline—are common and fundamental structures that can be applied anywhere and used by the diversity of researchers involved in investigating and recording CZ processes from a myriad of perspectives.more » « less
An official website of the United States government
